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The majority of fMRI experiments are conducted based on the blood oxygenation level dependent 

(BOLD) contrast [1-3], which is derived from the fact that deoxyhemoglobin is paramagnetic while 

oxyhemoglobin, similar to tissue, is diamagnetic, and changes in the local concentration of 

deoxyhemoglobin in the brain lead to alterations in the MRI image intensity.  It is generally accepted that 

neuronal activation induces an increase in regional blood flow without a commensurate increase in the 

regional oxygen consumption rate (CMRO2) [4-6]. Consequently, local capillary and venous 

deoxyhemoglobin concentrations decrease during neuronal activation, leading to an increase in T2* and 

T2.  This increase is reflected as an elevation of intensity in T2*- and T2-weighted MR images.   Based on 

this principle, to map neuronal function, T2* (or T2) – weighted images are acquired consecutively while 

the subject either rests or performs certain task or is presented with certain stimuli.  These images are 

subsequently analyzed with statistical methods to ascertain regions exhibiting significant signal changes 

between the task performance/stimulation and resting periods. 

For fMRI based on the BOLD contrast, high magnetic fields are very desirable because, as discussed 

below, both the sensitivity and specificity increase with the magnetic field.  In fact, the desire to improve 

the sensitivity and specificity of fMRI has been a major force driving the move towards higher and higher 

magnetic fields for in vivo MR.  It is generally accepted that the signal-to-noise ratio (SNR) in MR 

images scales linearly with the field strength [7] and this view is experimentally demonstrated to the field 

strength as high as 7 T although the B1 field and hence the coil sensitivity become somewhat nonuniform 

at very high magnetic fields [8]. 

In addition to the increase in SNR, theoretical considerations indicate that the BOLD contrast 

increases supralinearly with the field strength, depending on contributions from static and dynamic 

averaging [9]. The effect of the BOLD field inhomogeneity on the MR signal has been discussed 

extensively by others [9, 10] and is briefly summarized here. In the brain, hemoglobin stays within blood 

vessels and its effect on water protons depend on the location of the protons relative to the blood vessel. 

For the extravascular (i.e., tissue) spins, there is the dynamic averaging effect, which arises due to 

diffusion during the echo time (TE).  Because the diffusion distance within typical TE is rather small, 

dynamic averaging is prominent mainly for small blood vessels, e.g. capillaries, which are separated on 

the average by 50 µm [10].  Dynamic averaging leads to a change in T2 [9], thereby the BOLD contrast in 



both spin-echo and gradient-echo images. For large blood vessels, the effect of dynamic averaging for 

extravascular spins is negligible because diffusion distance is negligible compared with the size of these 

large vessels and static averaging is the main mechanism for the BOLD effect.  Static averaging comes 

into play if refocusing pulses are not used or asymmetric spin echoes are acquired.  The aforementioned 

picture of the extravascular BOLD effect was supported with numerical calculations [10, 11], which also 

provided quantitative assessment of the BOLD induced R2*/ R2 changes and its dependence on the vessel 

size.   Dynamic averaging was found to be dominant for small vessels (diameter < 8 μm at ~4T), and 

static averaging for large vessels (diameter > 10μm at ~4T).  While this vessel size dependence is also a 

function of the field strength, these calculations suggest that large vessel effects mostly arise from static 

averaging and small vessel contributions are dominated by dynamic averaging. Furthermore, it is useful to 

note that the dynamic averaging effects, mediated by diffusion, depends on the field inhomogeneity, 

hence the static magnetic field, quadratically while the static averaging effect depends on the static 

magnetic field linearly[9]. 

Because both the raw SNR and the BOLD contrast increase with the field strength, the sensitivity of 

fMRI goes up with the field strength more than quadratically, despite a shortening in transverse relaxation 

times (T2 and T2*) at high fields.  This increase in sensitivity has been experimentally demonstrated at 

fields up to 7 T in humans [12, 13] and 9.4 T in animals[14].  When noise is taken into account, a detailed 

study examining the BOLD response in the motor area [15] revealed that the contrast-to-noise ratio 

(CNR) at 3.0 T is 1.8-2.2 times that at 1.5 T.  

The increase in the sensitivity at high fields has been exploited to improve spatial resolution or 

temporal resolution or both [16, 17].  Studies have used 4 T magnets to elucidate the columnar 

organization in the visual cortex in human subjects [18, 19].     More interestingly, a recent study of the 

rat sematosensory cortex performed at 11.7 T [20] has revealed the ability of high field fMRI in providing 

a map of layer specific structure.  The high sensitivity of high field fMRI has also been employed to study 

the temporal characteristics of the BOLD response.  At 4 T, fMRI was used in one of first studies of 

event-related fMRI, exhibiting fMRI’s ability to differentiate brain regions based their responses’ 

temporal characteristics [21].  In a true single trial experiment at 4 T [22], the ability of fMRI to detect 

temporal information in individual trials, permitting a direct correlation with corresponding behavioral 

response, was demonstrated.  Another interesting aspect of high-field fMRI is the detection of the initial 

dip [23-27], which is believed to arise from an initial increase in deoxyhemoglobin concentration before 

the hemodynamic response takes place and to be more specific to the site of neuronal activation than the 

hyperemic BOLD response.  This response was also shown to increase with the magnetic field strength 

[27]. 



In addition to the increase in sensitivity, high magnetic fields also provide high specificity for fMRI.  

As pointed above, large vessel contributions scale linearly with the field while small vessel contributions 

scale quadratically with the field strength.  Consequently, microvascular contributions become more 

pronounced at high fields due to its quadratic dependence on B0.  This improves the spatial specificity of 

BOLD based fMRI, because capillary contributions are closer to the site of neuronal activation while 

large vessels are not uniformly distributed and may be spatially distant (~ 10 mm) from the activation.  

While such an increase in specificity is demonstrated in T2*-weighted fMRI data [12, 13], this increase in 

sensitivity becomes more dramatic in T2-weighted fMRI images as discussed below. 

In a T2 based BOLD fMRI map, the signal changes come from 1) intravascular blood T2 changes, 

from both large and small blood vessels, and 2) extravascular effect associated only with microvessels 

(capillaries and small post-capillary venules).  Therefore, in T2-weighted fMRI, only possible large vessel 

contribution comes from intravascular blood signal.  Fortuitously, at very high fields, T2 of the venous 

blood is very short [18-19], significantly attenuating the intravascular signal and hence the intravascular 

BOLD response.  Thus, at high fields, T2 based fMRI is mostly sensitive to microvascular contributions 

and more specific. In addition, the quadratic increase in the sensitivity of T2 BOLD contrast makes it 

possible to perform T2 based fMRI. In a recent study performed on human subjects at 7 T, activation 

patterns were found to localize to the gray matter [28].  In addition, the BOLD contrast was found to 

increase significantly with spatial resolution, suggesting that the partial voluming effect is significant. 

This point has been demonstrated by several studies at high fields ranging from 4 to 9.4 Tesla [14, 29]. A 

more quantitative study has also examined the point spread function of the T2 vs. T2* response and 

revealed significantly narrower response for the T2 BOLD maps [30]. 

In summary, theoretical considerations and experimental data obtained so far at fields as high as 11.7 

Tesla indicate that high magnetic fields provide an increase in both sensitivity and specificity. Such an 

increase is being exploited to improve spatial and/or temporal resolution in fMRI. In addition, this 

increase has also fueled the rapid expansion of high field MR. 
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